Learning of Human-like Algebraic Reasoning Using Deep Feedforward Neural Networks

نویسندگان

  • Chenghao Cai
  • Dengfeng Ke
  • Yanyan Xu
  • Kaile Su
چکیده

There is a wide gap between symbolic reasoning and deep learning. In this research, we explore the possibility of using deep learning to improve symbolic reasoning. Briefly, in a reasoning system, a deep feedforward neural network is used to guide rewriting processes after learning from algebraic reasoning examples produced by humans. To enable the neural network to recognise patterns of algebraic expressions with non-deterministic sizes, reduced partial trees are used to represent the expressions. Also, to represent both top-down and bottom-up information of the expressions, a centralisation technique is used to improve the reduced partial trees. Besides, symbolic association vectors and rule application records are used to improve the rewriting processes. Experimental results reveal that the algebraic reasoning examples can be accurately learnt only if the feedforward neural network has enough hidden layers. Also, the centralisation technique, the symbolic association vectors and the rule application records can reduce error rates of reasoning. In particular, the above approaches have led to 4.6% error rate of reasoning on a dataset of linear equations, differentials and integrals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically Inspired Feedforward Supervised Learning for Deep Self-Organizing Map Networks

In this study, we propose a novel deep neural network and its supervised learning method that uses a feedforward supervisory signal. The method is inspired by the human visual system and performs human-like association-based learning without any backward error propagation. The feedforward supervisory signal that produces the correct result is preceded by the target signal and associates its con...

متن کامل

Application of a Convolutional Neural Network for image classification to the analysis of collisions in High Energy Physics

The application of deep learning techniques using convolutional neural networks to the classification of particle collisions in High Energy Physics is explored. An intuitive approach to transform physical variables, like momenta of particles and jets, into a single image that captures the relevant information, is proposed. The idea is tested using a well known deep learning framework on a simul...

متن کامل

SLDR-DL: A Framework for SLD-Resolution with Deep Learning

This paper introduces an SLD-resolution technique based on deep learning. This technique enables neural networks to learn from old and successful resolution processes and to use learnt experiences to guide new resolution processes. An implementation of this technique is named SLDR-DL. It includes a Prolog library of deep feedforward neural networks and some essential functions of resolution. In...

متن کامل

The Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks

Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.07503  شماره 

صفحات  -

تاریخ انتشار 2017